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ABSTRACT 

A s h p l i f i e d  four coefficient lunar gyavi- 
t a t iona l  potenkial model has been developed 
for Apollo mission control. This model was 
developed using Lunar Orbiter tracking data. 
It provides accurate predictions of orb i t  
clement h i s tor ies  over a range of orbit  
inclinations and o rb i t  eccentricit ies.  
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This document reports the work accomplished under Task E of NASA contract 
HA3 1-799 concerniag lunar gravitational m o d e l  analysis i n  support of 
Apollo mission control. 
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2.0 SCOPE 

This document is a f i n a l  report covering the work done under NASA contract 
MAS 1-7954, Task E. 
been developed f o r  application t o  Apollo mission control. 

A s h p h  four coefficient lunar gravitational model has 
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3.0 INTRODUCTION 

Many studies have been in i t ia ted  i n  an attempt t o  define an accurate lunar 
gravitational model based on tracking data obtained during the Lunar Orbiter 
pmgram. Simple four coefficient models were developed during the  program 
and were used successfully i n  mission control. 
been developed during and subsequent t o  the program. 
models i s  presented i n  Reference 1. 
no one model had been developed which would accurately predict o rb i t  element 
his tor ies  fo r  the range of' conditions encountered during the Lunar Orbiter 
program. Generally, the models w e r e  also very complicated, including up to 
s ix ty  coefficients (seventh order). 

I4any high order models have 
One of these high order 

A t  the time the subject study was in i t ia ted  

The subject study was in i t ia ted  i n  the attempt t o  develop a simple lunar model 
which would be applicable f o r  A p o l l o  mission control. 
approximately four coefficients or  l e s s  was desired which would be significantly 
better than the t r i a x i a l  moon model. This document describes the procedures 
used and defines the result ing simple four coefficient model (R-2) which was 
developed. The abil i ty of the R-2 model to  predict o rb i t  elements is i l lus -  
trated f o r  several different  orb i t s  *om Wnar Orbiter Mission I, 111, and V. 
In addition, predictions a re  made of orb i t  element variations for  a typical  
A p o l l o  orbit .  

Specifically, a model of 

Comparison of the  R-2 model with other candidate lunar gravitational models is 
presented i n  a companion docment (Reference 2). 
done under Task D of NAS 1-7954 and compares the following capabili t ies of 
nine lunar models: 

This document covers work 

o r b i t  determination convergence 

. in-orbit prediction 

. state vector mapping 
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4.0 PROCEDURE 

Iunar gravitational coefficients are selected which exhibit a significant 
influence on a t  least one of the orb i t  elements, The number of coefficients 
is kept to a minimum i n  the in te res t  of obtaining a simple model; a side benefit 
is realized i n  that there a re  essent ia l ly  no problems due t o  correlation between 
coefficients. Once the coefficients a re  selected, then values are adjusted 
by an i te ra t ive  mocess t o  obtain the best possible f i t  wiYn Orbit Determination 
(OD) solutions from Lunar Orbiter tracking data. 
Orbiter I11 (also called the Apollo-type o rb i t )  a r e  used to  develop the model, 
i n i t i a l ly .  
h r  Orb€ter I11 and from Lunar Orbiters I and V. 

Data from mse  9 of Lunar 

This model is then checked against data from an ear l ie r  phase of 

Orbit element his tor ies  are defined by a d i g i t a l  computing program which imple- 
ments the perturbation equations defined i n  the Appendix. 
effects are included i n  these equations. 

Third body (Earth) 

SHEET 4 
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5.0 EFFECT OF GRAVITATIONAL MODEL COEFFICfENTs ON ORBIT ELEMFNTS 

Effects of the model coefficients J20, J20, JhO, C22 and C31 on orbi t  elements 
are presented i n  t h i s  section. orbi elements considered are: perilune 
alt i tude,  i ne r t i a l  node longitude, argimnt of p r i J  i a e  
(Since semi-major axis remains constant, the affects on agLtme a l t t tude  a re  
Qmsi te  those on perilune altitude.) 

anr? orbi t  iwlf.nq.Mon. 

The i n i t i a l  conditions used are those defined by OD 9001-8 ('ia%le 5-1), which 
are the i n i t i a l  conditions of phase 9 of Lunar Orbiter I11 (also known as the 
Apollo type orbi t ) .  The "Apollo-typ" orbit kms achieved during the extended 
phase of Lunar Orbiter I11 mission after the photographic objectives were 
obtained. This orb i t  closely simulated the Apollo orb i t  and vas obtained 
primarily for the pwpose of providing the MSFIV w i t h  tracking experieace. The 
coments of t h i s  section pertain specifically t o  t h i s  type of an orb i t  and m y  
not necessarily apply to other orbits.  

It i s  w e l l  kulo~m that the second order zonal harmonic coefficient, J20, has a 
direct effect  on node longitude a d  argument of perilune. This fact  is shom 
graphically i n  Figures 5-1 and 5-2. J also has an indirect effect  on ot'ler 
o rb i t  elements where the perturbations2?n these elements are functions of naie 
longitude and argmznt of perilme. However, these effects  a r e  small and are 
not skown here. It i s  evident fro= the data shown tbt a value of J20 can be 
selected t o  provfde a excellent fi+, of node longit=&e. 
gives ~i good prediction of the average rate of chmge i n  argment of pel-rlune. 
Iio%~ever, it does no% proviae f o r  the short period oscillations. mis value of 
J20 (2.1 x loa4) i s  essentially the sane as the "accepted" value used in  the 
trfaxial moon :codel. 

%%is sa?: value of 52, 

The most significant ei'fect of J ~ Q  i s  to perturb eccentricity, and hence pri- 
lune al t i tude as shovn i n  F i w e  5-3. With the paper value of J30, a good 
fit of perilune al t i tude can be obtalned for  the f irst  22 days, but there are 
large errors beyond that. 

shown i n  Figure 5-h. 

has an insignificant effect  on node longitude 
and argument of perilune, have some effect on orb i t  inclination, as 

The fourth order zoml haxmonic coefficient; JLO has som effect  an perilune 
alt i tude,  8s indicated i n  Figure 5-5. It can be seen, howe-fer, that  it i s  
not possible t o  get a good f i t  of perilune al t i tude over the 40-day period 
using J 0 and 540. J40 aiso has a significznt effect  on node longitude and 
argunteng of perilune, as shovn i n  Figure 5-6 Etnd 5-7. Therefore, f o r  any 
value of J40 selected, J20 must be adjusted t o  obtain the desired wr ia t ion  
i n  node longitude and argment of p r i l u n e .  
ing the short period oscil lation i n  argunent of perilune, 

J40 provides no help i n  predict- 

The tesseralharmonic coefficient, C22, has essentially no effect  on any orb i t  
element except inclination. 
in Figure 5-8. 
deTine a value of C22 on the h s i s  of these data alone. 
t ha t  the value of 2.1 x 10-5 (which i s  essentially the value from the t r i s x i a l  
moon model) provides a reasonable variation. 
that t h i s  value is  valid.) 

The perturbations i n  orb i t  inclination are shotm 
Because of the scat ter  i n  the OD data, it is  not possiiile to 

However, it appears 

(It w i l l  be shown i n  Section 6 
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The four coefficients discussed above (J20, J 0, 540, and C22) were originally 

not .possible t o  obtain a goo3 fit of perilune altitv.de or  argment of perilune 
over the range of data available. 
is  not important when i n  a near circular orbi t  and R good f i t  of per i lme 
al t i tude is  obtained fo r  the f i r s t  22 days. 
than adeqmte for A 3 1 1 0  where the orbi t  duration vi11 not be more than a f e w  
days. 
set of i n i t i a l  conaitions, and it w i l l  not be t rue f o r  a l l  i n i t i a l  conditions. 
For example, if the i n i t i a l  conditions 5x3 given by OD 9009-8 (shown a t  21.3 days 
i n  Figure 5-3) were used, it i s  seen that there would be large errors in peri- 
lune al t i tude bmediately. Therefore, it is  important t o  define a model which 
w i l l  eihibit the come& trends, regardless of i n i t i a l  conditions. 

I n  order t o  obtain a satisfcctory model, en additional coefficient is  required. 
Actually ,R+o is  eliminated since it denonstrates 116 significant admntage. 
Anotber coefficient is  sought which has l i t t l e  effect  on node longitude and 
orbi t  inclination, w h i l e  having a s imif icant  effect  on eccentricity (hence 
perilune al t i tude)  and srgment of perilune. %e perturbations due to t h i s  
coefficient must M-so be a function of selenographtc node longitude. After 
inspection of a complete set of orbi t  perkrbation equations (through order 4), 
the coefficient C 3 1  is  selected. 

The effects  of C 3 1  on perilune alt i tude are advantageous, as shown in Figure 
5-9. Now it is seen tha t  a satisfactory com3ination of J30 and C31, i s  
selected t o  give a good fit of perilune alt i tude.  
same value of C 3 1  will also provide a very good f i t  of argument of perilune 
data. 

EFFECT OF GRAVITA!TIoiW, MODEL COEFF'ICIEMTS ON ORBIT ELENENTS (Continuec 

considered for the sqimple L u n a r  m o d e l .  With z hese coefficients alone, it i s  

It may be argued tha t  argument of perilune 

This period of time is  surely more 

However it must be remembered that th i s  good f i t  is for  a particular 

Figure 5-10 shows that  the 

The significant e f fec ts  of the coefficients are summarized i n  Table 5-2. "lie 
values of these coefficients m e  now adjusted though an i terat ive process t o  
define .the lunar models vhich are discussed i n  the following section, 
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TABLE 5-1 

INITIAL CONDITIONS, APOLLO TYPE ORBIT 

Lunar Orbiter 111, Phase 9 
OD 9001-8 

Epoch 

Date 8-30-67 

T i m e  (hr, min) GMT 20: 55 
- 

Apolune Altitude, Km 315.59 

Perilune Altitude, Km 144.46 

Orbit Inclination, Deg. 20.88 

Node Longitude (Selenographic) 
deg. 63.93 

Argument of perilune , Deg. 354.31 
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6.0 CHARACTERISTICS OF SIMPLE LUNAR MODELS 

Orbit  element h i s t o r i e s  a r e  shown f o r  two simple lunar g rav i t a t iona l  models; 
a preliminary model designated R - l  and the  recommended model R-2, 

6.1 PRELIMINARY R-1 MODEL 

During the  ear ly  phase of the  study, a preliminary model was developed which 
cons i s t s  of the  coef f ic ien ts  J20, J30, J40, and C22. 
proved t o  be unsat isfactory,  i t  is  included t o  provide a complete report  
on the  work which w a s  accomplished. This R-1  model i s  defined as follows: 

Although t h i s  model 

-4 = 2.1 x 10 J20 
= -4.0 x 10 -5 

'3 0 

= O  J40 

These coef f ic ien ts  are used i n  the  o r b i t  per turbat ion equations as defined 
i n  t he  Appendix, These values provide the  bes t  f i t  of t he  Lunar Orbi ter  111, 
Phase 9 ,  tracking data when t h e  model i s  l imited t o  these coef f ic ien ts .  

The value of 330 was adjusted to  -4.0 x 10 
a l t i t u d e  f o r  t h e  first 22 days. 
coe f f i c i en t  provided no improvements i n  any of the  data.  
was defined fo r  J20 t o  provide a good f i t  of node longitude. 
e s sen t i a l ly  tha t  of the  t r i a x i a l  moon model. 
w a s  se lected as t h i s  i s  e s sen t i a l ly  tha t  of the  t r i a x i a l  moon model and it 
provides a reasonable var ia t ion  i n  o rb i t  inc l ina t ion .  

-5 t o  obtain a good f i t  of perilune 
The value of J40 was s e t  a t  0 since t h i s  

A value of 2.1 x 
This value is  

For C22, a value of 2.1 x 10-5 

Orbit  element h i s t o r i e s  a s  predicted w i t h  the p re l imina ry  model R-1 a r e  pre- 
sented i n  Figures 6-1 through 6-4. I n i t i a l  conditions a r e  taken a s  those of 
OD 9001-8 (see Table 6-1). These h i s t o r i e s  a r e  compraed w i t h  a c t u a l  OD solu- 
t i ons  from Lunar Orbi ter  111, Phase 9 tracking data.  

This model, R-1 ,  i s  considered a s  unsat isfactory as it does not follow the  
trend i n  perilune a l t i t u d e  ( see  Figure 6-1). Also, there are la rge  e r ro r s  
i n  argument of per i lune (Figure 6-3), The model was defined during the  ea r ly  
phase of the study a s  the  bes t  model obtainable within the  l i m i t s  of the  4 
coe f f i c i en t s  considered. When it became apparent that  t h i s  model was unsatis-  
fac tory ,  the R-2 model w a s  developed ( u t i l i z i n g  one other  coef f ic ien t ) .  

6.2 R-2 MODEL 

The R-2 model i s  defined as follows: 

Jz0 = 2.07108 x 
~ 3 0  = -2.1 x 10-5 

C22 = 2.0716 x low5 
c~~ = 3.4 10-5 

SHEET 19 
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These coe f f i c i en t s  a r e  used i n  the  o rb i t  per turbat ion equations a s  defined i n  
the  Appendix. 

For t h i s  model, JzO and C22 were assigned the  values of the  t r i a x i a l  moon 
model s ince it had been determined during the  development of the  R-1 model 
t ha t  these values were sa t i s fac tory .  The values of J30 and C 3 1  were then 
adjusted t o  obtain the bes t  f i t  of per i lune a l t i t u d e  and argument of perilune 
w i t h  the  data from Lunar Orbiter 111, Phase 9. "be model was then checked 
aga ins t  data  from Phase 6 of Lunar Orbi ter  111 and s l i g h t  adjustments were 
made i n  both J30 and C 3 1  t o  improve the  f i t  while not degrading the  f i t  with 
the  Phase 9 data. 

Orbit  element var ia t ions  as predicted w i t h  the  R-2 model a r e  compared with 
tracking data (OD solutions) from 5 d i f f e ren t  o r b i t  phases of t he  Lunar Orbi ter  
missions. 

Lunar Orbi ter  111, Phase 9 Comparisons a r e  presented i n  Figures 6-5 through 
6-8. The i n i t i a l  conditions used a r e  those of OD 9001-8 (defined i n  Table 6-1) 
which w a s  t h e  f i r s t  o rb i t  determination obtained a f t e r  the  o rb i t  was adjusted 
t o  simulate the  Apollo o r b i t ,  This i s  a near c i r c u l a r  o rb i t  w i t h  an incl ina-  
t i o n  of about 21'. 

Orbit  element var ia t ions  a s  predicted w i t h  the  t r i a x i a l  moon model are included 
fo r  comparison w i t h  the R-2 model resu l t s .  I t  i s  noted t h a t  the  R-2 model 
i s  f a r  superior  t o  the  t r i a x i a l  moon model. A very good prediction of perilune 
a l t i t u d e  i s  obtained. Node longitude predict ion i s  exce l len t ,  and argument 
of per i lune i s  predicted very w e l l ,  
reasonable, considering the apparent s c a t t e r  i n  the data.  

?he predict ion i n  o r b i t  inc l ina t ion  appears 

Lunar Orbi ter  111, Phase 6 Comparisons are presented i n  Figures 6-9 through 6-12. 
Phase 6 was the f i r s t  phase a f t e r  completion of photography. The o r b i t  i s  
e l l i p t i c a l  with an inc l ina t ion  of about 21'. 
conditions (OD 6000-8) used i n  the  comparisons. 

Table 6-1 def ines  the  i n i t i a l  

With an examination of the r e s u l t s  given i n  Figures 6-9 through 6-12, i t  i s  
seen t h a t  a goo3 overa l l  f i t  i s  obtained f o r  each of the  4 elements. 

Lunar Orbiter 111,Phase 5Comparisons are presented i n  Figures 6-13 through 
6-16. These data  are presented t o  demonstrate the  short  t e r m  fit. A ~ l i a s e  
was selactej. t ha t  had a l a rge  number of data  poin ts ;  a t  l e a s t  2 per day. 
Phase 5 is the  photographic phase of Lunar Orbi ter  111; i t s  cha rac t e r i s t i c s  
are nearly the  same a s  those of Phase 6 .  (See OD 5302-8 i n  a b l e  6-1.) The 
f i r s t  4 days of t he  phase a r e  shown a s  t h i s  t i m e  period i s  representat ive of 
t h e  maximum o r b i t a l  duration of an Apollo mission. 

An exce l len t  f i t  i s  obtained f o r  a l l  the  o r b i t  elements over the  4 day period 
shown. 

Lunar Orbiter I Comparisons are presented i n  Figures 6-17 through 6-20. 
orbi t '  has approximately the  same alt'it 'uae ar;: the: ear ly  phtises of Lunar Orbi ter  
111, with an  inc l ina t ion  of about 12O (OD 7000-4, Table 6-1). 

This 
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Lunar Orbi ter  V Comparisons a r e  presented i n  Figures 6-21 through 6-24. 
i s  an e l l i p t i c a l  orbit w i t h  an inc l ina t ion  of 85'. 
A very good f i t  i s  obtained f o r  a l l  4 o r b i t  elements over the  complete t i m e  
period of 110 days. The excel lent  f i t  of the o r b i t  inc l ina t ion  data (Figure 
6-24) ind ica tes  t h a t  there  is  very l i t t l e  s c a t t e r  i n  the  data  and tha t  the  
value of C22 is val id .  (Previous inc l ina t ion  da ta  shown did not ind ica te  a 
very good f i t  due t o  scatter i n  the  da t a , )  I t  i s  s ign i f i can t  t o  note t h a t  
t he  model which was developed f o r  an o rb i t  w i t h  a l o w  inc l ina t ion  (21') and 
near ly  c i r c u l a r  (eccent r ic i ty  = 0.04) is  a l s o  va l id  f o r  the  Lunar Orbi ter  V 
o r b i t  ( i nc l ina t ion  = 85', eccen t r i c i ty  = 

This 
(See OD 8000-10, Table 6-1). 

0.3). 
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7.0 APOLM ORBIT PERTBBiTI0iE 

&'dit elmieut histories have been calcclaked f3r the Apollo m b i t  ( b t h  the 
e1lil;tFcal and circular orbi ts)  using the R-2 model and are -r;resenteS! i n  
Fi,=ures 7-3- t?iiou$q 7-4. 
urLaxlal m o c  mdei .  Initial ccrdit-ions are as  f3I.Lms : 

For c m ~ n r i s o n ,  the his tor ies  are a l so  shcm-i for  the 
c 

Dzte Dcceber 24, 25-63 

Apolune a It i trid e 17Q n. si. 

Perilune al t i tude 60 II. LXL 

Selenagaphic node longitude 52 degrees 

Argunent 02 pertlwze 180 degrees 

Inclination 168 degrees 

A f t e r  tiis cctinpiete revoultions Ln the  e l l i p t i c a l  orbi t  { k . 2  hours), a:xlune 
al t i tude is lovered t o  6c nautical niies; no other orbi t  adjustnents are rade. 

1% is  noted that uiYn the R-2 model, gerilune i n  the i n i t i a l  ellippticzl orbi t  
increases f i c z  60 t o  60.35 n. mi. 'cy the tiiie of orb i t  transfer. 
on the orbit nst: becomes apolum?, and the new perillrnc ;.loves t o  a locatisn of 
appro;:iimtely -kk@ and decreases by appoxinatel:- 2 n, m i .  a f te r  8 revalxtiom 
{ 21.14 kotws .fter 2mm.r o r b i t  insertion). 

This 23int 

If it is mm.u~cZ tht accurate orbi t  detcrninntions a re  ;,=de each orbi t  and 
tha t  the s t a t e  w i l l  be forr:arded nb more than 3 hours Tor the  trens-earth 
injection panewer, an error  of aggroxkmtely 0.4 n a u t i c a l  i.Lks rnzy be 
encou:itered by  six tbe t r i ax i a l  :11'3on nodel t o  fonlzrd the state ,  
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8.0 CONCLUSIONS ANID FSEO14ME3DATIO??S 

A simple bcoef f ic ien t  lunar gravitational model has been developed using 
tracking data from Lunar Orbiter missions. 
accurately predicts orb i t  e1emn-k his tor ies  fo r  a range of i n i t i a l  conditions 
(inclinations of 12O, 21° and 85", and eccentricit ies of 0.04 t o  0.3). It i s  
recornended that  t h i s  mdel be used for Apollo mission control and for lunar 
mission design zmrk requiring long term orbi t  predictions. 

It has been shown t ha t  the model 

It is further recommended that  additional analyses be performed to improve t h i s  
model. 
produce a small phase shift i n  the perturbations which are dependen?:n 
selenographic longitude and therefore w i l l  improve the predictions in perilune 
al t i tude and argument of perilune. 

It is believed thEt the addition 02 one more coefficient (S  w i l l  

SHEET 52 



THE COMPANY 

NUMBER D2-100819-1 
REV LTR 

1. 

2. 

3-  

Barrow, G. D., "Evaluation of Nine Lunar Models for Apollo - Final  Report," 
Doc=& D2-100820-1, December 1968, The Being Company, Seattle, Wash- 
ington. 

Gapcynski, John P., "The Lunar Gravitational Field as Determined from 
the Tracking Data of the Lunar Orbiter Series of Spacecraft," ASS Paper 
68-132, September 1968. 

Mueller, Ivan I., "Introduction to  Satellite Geodesy," Frederick Ungar 
Publishing Company, 1964. 

SHEET 53 



TU€ COCIPPUY 

NUMBER E-lo0819-1 
REV LTR 

The lunar gravitational potential  function i s  defined by the following expres- 
sion : 

1 (c, cos m + S, sin m x ) 

Orbit e l emnt  perturbation equations may be derived from .14.1ss expression and 
with the inclusion of third body (earth) effects.  
taken from Reference 2 with the assmption tha t  the sub-earth poilzt is at a 
selenographic position of 0 la t i tuae  and 0 longitude. The perturbation 
equations are 3efined below with the definit ion of nomnclature *mediately 
following. 
are XWted t o  the WefficLe1~tsJ20, J30, 540, C22, and C31.  

Third body ef fec ts  are 

Note that  by convention, when m = 0, Cno = -Jno. These equations 

a = O  . * * 
e L= “30 f e31 + ‘40 + “E 

1 + (15 sin2 i cos i -4 cos 2) cos o s in  as 

1 + (cos2 sts - sin2 as cos2i  ) sin 2 6.) 

sin i shrre--st* 

c 
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APPEZNDM (Continued) 

1 + (1-15  COS^ I) cos 0 sin Os 
4 2  - 15n RM e J40 sin i cos i (6-7 sin2 i )  sin 2 o 

- (2  cos i + 30 cos 3 i) sino sin as - &31 cos i 1 
4 [(16-62 sin2 i + 49 s in  i )  

+ 9 e2 (8-28 sin2 i -+ 21 sin4 i )  5 

+ (6-7 sin2 I) sin2 i cos 2 0 

2 4 - 2- (12-70 sin2 i + 63 sin i) cos 2 a*] 
2 
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APPENDIX (Continued) 

+ 2 ( cos2 as " sin2 as cos2 i) cos 2 0 
2 

.. 1 + 2 (cos2 os + sin2 nS cos' i 
2 

1 - (22-90 cos2 i sin o sin as 

1 - e2 (3-7 sin2 i) cos 2 0  

- sin os cos i (2 + 3 2 - 5 e2 cos 2 0 )I 
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APPEPTDM (Continued) 

l7onenclature 

a 

e 

i 

n 

r 

x 

Subscripts 

20 
22 
30 
31 
40 

E 

semi-major axis  of the orb i t  

eccentricity of the o rb i t  

selenocentric radius of the spaeecrafi 

harmonic coef f ic ien t  

gravitational constant of the moon, 4902.58O1 b3/sec2 

gravitational coastant of the earth, 39tk;OI .28 km3/sec 2 

harmonic coefficient 

associated Legendre plynomials 

moon radius, 1738.09 lan 

earth-moon radius, function af'date 

hamonic coefficient 

selenographic la t i tude of spacecraft 

selenographic longitude of spacecraft 

argument of perilune of the orbi t  

i ne r t i a l  node longitude of the orbi t ,  referenced t o  
the prime meridian a t  epoch 

selenzogrsphlc node longitude of the orbit 

re la t ing t o  the particular harmonic coefficient; 

re la t ing t o  the ear th 
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